Whitepaper
4 min read

eBook: Power Up Machine Learning Process. Build Feature Stores Faster - an Introduction to Vertex AI, Snowflake and dbt Cloud

Recently we published the first ebook in the area of MLOps: "Power Up Machine Learning Process. Build Feature Stores Faster - an Introduction to Vertex AI, Snowflake and dbt Cloud". In this short article, we will tell you what you can find inside the ebook, what questions and problems it addresses and share the first opinions. 

The Business Perspective and Technical Perspective on Feature Store and MLOps 

In this ebook, we discuss in detail the Feature Store as one of the components of MLOps. From the general concept of MLOps and Feature Store as a solution, to specific problems that cause inefficiencies in ML processes to the technical details of building a Feature Store and how to integrate GCP with Snowflake using terraform. We demonstrate using the example of the Feature Store what risks are involved in not optimizing ML processes. This provides an easy-to-understand explanation of what MLOps is on the one hand, and on the other hand provides the technical details needed to adopt the solution right away. 

That's why we've divided the ebook into two parts: the business perspective and the technical perspective, so everyone can easily find the content that interests them. 

What will you find inside this MLOps ebook?

  • What MLOps is and the MLOps Platform
  • What impact MLOps implementation can have on business
  • 5 Machine Learning issues that can cause the ineffective use of data (along with a solution)
  • A step-by-step guide to building a Feature Store
  • Comparison of the most popular Feature Stores
  • Insight into Machine Learning - MLOps correlations
  • Example of MLOps architecture and workflow
  • How to integrate GCP with Snowflake using terraform
  • Vertex.ai platform - how it works in practice

See what the experts are saying about the ebook

This e-book describes the real-life challenges of running Machine Learning on production systems from both business and technical perspectives. Moreover, it guides you through the practical solutions, based on our expert's experience.  Check it out especially if you're struggling with latency, data silos, data drift or data skew!

Michał Bryś, Senior ML Engineer and Technical Product Owner

A very interesting position where the author describes the MLOps world and takes a look at it from a Feature Store perspective. This eBook contains solid theoretical information on what MLOps is and how Feature Stores can address its problems. The second part describes the first steps in Data Engineering work that will lead to creating the first features. This eBook provides very detailed information on how to start with dbt, Snowflake and Vertex AI tools.

I recommend it for everyone taking their first steps in the Data Engineering world or anyone who wants to extend his/her knowledge about Feature Stores.

Piotr Pękala, Project Architects Lead

Ideas are worthless without execution”. This popular adage can be also applied perfectly to Data Science and Machine Learning results, where so many companies jump at the idea of using ML, but are struggling to execute it by delivering ML apps to production. That’s why the MLOps movement was shaped, to gather all the engineering practices in one place to deploy and maintain ML models in production efficiently and reliably. A lot has been developed, especially recently around Feature Stores - how data is prepared, stored and fed to ML models in training and production.

In this e-book, Getindata engineers introduce the reader to the MLOps concept and then focus on demonstrating how to build a Feature Store using managed cloud services and open-source technologies. Unlike many vendor e-books, these guys spare no technical details of the architecture and the solution. While they show the solution based on particular technologies like Vertex AI, Snowflake or dbt, the knowledge and design are presented abstractly with replaceable components.

If you are responsible for the data & AI strategy in your company, this source of information can help you accelerate and grasp the concepts of MLOps and Feature Stores without a vendor selling you anything.

If you’re an engineer, this very juicy tutorial will show you in detail how you can implement a Feature Store at your company. It will not only introduce you to the problem and show how to do a PoC - from configuring cloud services to running your first pipeline, but will also help you productionize the solution with infrastructure as a code, CICD and so on. All you need from start to finish in a concise writeup!

Krzysztof Zarzycki, GetInData CTO

big data
machine learning
MLOps
Feature Store
27 October 2022

Want more? Check our articles

getindata blog big data knowledge sharing it jobs

How do we apply knowledge sharing in our teams? GetInData’s internal initiatives

Knowledge sharing is one of our main missions. We regularly speak at international conferences, we contribute to open-source technologies, organize…

Read more
power big data science
Tutorial

Power of Big Data: Science

Welcome to the next installment of the "Big Data for Business" series, in which we deal with the growing popularity of Big Data solutions in various…

Read more
getindator create a modern tech inspired thumbnail graphic
Tutorial

dbt Semantic Layer - Implementation

Introduction Welcome back to the dbt Semantic Layer series! This article is a continuation of our previous article titled “dbt Semantic Layer - what…

Read more
1 RsDrT5xOpdAcpehomqlOPg
Big Data Event

2³ Reasons To Speak at Big Data Tech Warsaw 2020 (February 27th, 2020)

Big Data Technology Warsaw Summit 2020 is fast approaching. This will be 6th edition of the conference that is jointly organised by Evention and…

Read more
bqmlobszar roboczy 1 4
Tutorial

A Step-by-Step Guide to Training a Machine Learning Model using BigQuery ML (BQML)

What is BigQuery ML? BQML empowers data analysts to create and execute ML models through existing SQL tools & skills. Thanks to that, data analysts…

Read more
deploying serverless mlflow google cloud platform using cloud run machine learning getindata notext
Tutorial

Deploying serverless MLFlow on Google Cloud Platform using Cloud Run

At GetInData, we build elastic MLOps platforms to fit our customer’s needs. One of the key functionalities of the MLOps platform is the ability to…

Read more

Contact us

Interested in our solutions?
Contact us!

Together, we will select the best Big Data solutions for your organization and build a project that will have a real impact on your organization.


What did you find most impressive about GetInData?

They did a very good job in finding people that fitted in Acast both technically as well as culturally.
Type the form or send a e-mail: hello@getindata.com
The administrator of your personal data is GetInData Poland Sp. z o.o. with its registered seat in Warsaw (02-508), 39/20 Pulawska St. Your data is processed for the purpose of provision of electronic services in accordance with the Terms & Conditions. For more information on personal data processing and your rights please see Privacy Policy.

By submitting this form, you agree to our Terms & Conditions and Privacy Policy